Special Right Triangles

Below is a diagram of a baseball diamond. The distance between each base is 90 feet. How far is it between 1st base and 3rd base? Let the Pythagorean Theorem be of your assistance.

*If you draw a line from 1st to 3rd base, what are the measures of the three angles in the two triangles that are created by the line?

45, 45, 90 * Are the two triangles created congruent? Why or why not?

$$90^{2} + 90^{2} = C^{2}$$

 $8100 + 8100 = C^{2}$
 $16,200 = C^{2}$
 $127,279 ff = C$

In general, what can be said about the lengths of the sides of a 45°-45°-90° triangle? Once again, use the Pythagorean Theorem to help you out.

52+52=d2 1/252 = d

Theorem: In a 45°-45°-90° triangle, the hypotenuse is _______times as long as a leg.

Ex. #1: Find x.

Ex. #2: Find x-.

Ex. #3: Find x.

Below is an equilateral triangle. From this information we know that the sides are _____Conquent angles are all equal. Draw in altitude BD. What are the angles of the two triangles that you have just created? 20° Label the altitude as "a". If \overline{AB} is "s", label segments \overline{BC} , \overline{AD} , and \overline{DC} . Use the Pythagorean Theorem to find the "a" in terms of the lengths of the other sides of the triangle.

$$b = c \sqrt{\frac{3}{4}}$$

$$b = c \sqrt{\frac{3}{4}}$$

$$b = c \sqrt{\frac{3}{4}}$$

So, the sides of a 30°-60°-90° triangle are

Now, get rid of the fractions by multiplying all three measurements by the common denominator. The following theorem uses these measurements.

Theorem: In a 30°-60°-90° triangle, the hypotenuse is ______ as long as the shorter leg, and the longer leg is _______ times as long as the shorter leg.

Ex. #4: Find x and y.

Ex. #5: Find x and y.

$$x = \frac{16}{9}$$

$$y = \frac{1}{3}$$

Ex. #6: Find x and y.

$$x = \frac{q}{r_3}$$
 $y = \frac{q}{v_3} = \frac{13}{v_3}$

A) Find the missing measures in Triangle ABC if...

in Triangle ABC it...

3) s = 4.1

h= 4.1VZ

4) $h = 3.7\sqrt{2} s = 3.7$

B) Find the missing measures in Triangle DEF if...

1) d = 4

$$f = 4\sqrt{3}$$

e= 8

- 2) e = 10
- d = 5
- $f = 5\sqrt{3}$

- 3) $f = 7\sqrt{3}$
- d = 7
- e= 14

- 4) d = 9
- e=___*l*′
- ,f=